Un planeta blando gigante que orbita una estrella enana roja

Un planeta gigante de gas ultrasuave que orbita una estrella enana roja

Impresión artística de un planeta gigante gaseoso súper esponjoso que orbita una estrella enana roja. Un exoplaneta gigante gaseoso [right] Se ha encontrado una estrella enana roja fría con la densidad de un malvavisco orbitándola. [left] en el instrumento de velocidad radial NEID financiado por la NASA en el telescopio WIYN de 3,5 metros en el Observatorio Nacional Kitt Peak, un programa de NOIRLab de la NSF. El planeta, llamado TOI-3757 b, es el planeta gigante gaseoso más abundante jamás descubierto alrededor de este tipo de estrella. Crédito: NOIRLab/NSF/AURA/J. da Silva/Motor espacial/M. Zamani

El telescopio del Observatorio Nacional Kitt Peak ayuda a determinar que[{» attribute=»»>Jupiter-like Planet is the lowest-density gas giant ever detected around a red dwarf.

A gas giant exoplanet with the density of a marshmallow has been detected in orbit around a cool red dwarf star. A suite of astronomical instruments was used to make the observations, including the NASA-funded NEID radial-velocity instrument on the WIYN 3.5-meter Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. Named TOI-3757 b, the exoplanet is the fluffiest gas giant planet ever discovered around this type of star.

Using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory in Arizona, astronomers have observed an unusual Jupiter-like planet in orbit around a cool red dwarf star. Located in the constellation of Auriga the Charioteer around 580 light-years from Earth, this planet, identified as TOI-3757 b, is the lowest-density planet ever detected around a red dwarf star and is estimated to have an average density akin to that of a marshmallow.

Red dwarf stars are the smallest and dimmest members of so-called main-sequence stars — stars that convert hydrogen into helium in their cores at a steady rate. Although they are “cool” compared to stars like our Sun, red dwarf stars can be extremely active and erupt with powerful flares. This can strip orbiting planets of their atmospheres, making this star system a seemingly inhospitable location to form such a gossamer planet.

READ  Reveladas las diferencias entre el cerebro humano y el neandertal

«Los planetas gigantes alrededor de las estrellas enanas rojas se han considerado tradicionalmente difíciles de formar», dijo Shubham Kanodia, investigador del Carnegie Institution for Earth and Planetary Science Laboratory y primer autor del artículo. El diario astronómicoyo «Hasta ahora, esto solo se ha observado en una pequeña muestra de estudios Doppler, que normalmente detectan planetas gigantes más alejados de estas estrellas enanas rojas. «Hasta ahora, no hemos tenido una muestra lo suficientemente grande de planetas para encontrar planetas gaseosos cercanos de una manera robusta».

Todavía hay misterios sin explicar en torno a TOI-3757 b, el mayor de los cuales es cómo se pudo formar un planeta gigante gaseoso alrededor de una estrella enana roja, y especialmente una con una densidad tan baja. El equipo de Kanodia, sin embargo, cree que puede tener una solución al misterio.

Telescopio WIYN de 3,5 metros

Desde el suelo en el Observatorio Nacional Keith Peak (KPNO), un programa de NOIRLab de NSF, el telescopio de 3,5 metros de Wisconsin-Indiana-Yale-NOIRLab (WIYN) parece ver la Vía Láctea a medida que se derrama sobre el horizonte. El resplandor rojizo del aire, un fenómeno natural, también tiñe el horizonte. KPNO está ubicado en el desierto de Arizona-Sonoran en la Nación Tohono Odham, y esta vista clara del plano galáctico de la Vía Láctea muestra las condiciones favorables en este entorno para ver objetos celestes tenues. Estas condiciones, que incluyen bajos niveles de contaminación lumínica, cielos más oscuros que las magnitudes 20 y condiciones atmosféricas secas, han permitido a los investigadores del consorcio WIYN realizar observaciones de galaxias, nebulosas y exoplanetas, así como muchos otros objetivos astronómicos, utilizando El telescopio WIYN de 3,5 metros y su telescopio hermano, el telescopio WIYN de 0,9 metros. Crédito: KPNO/NOIRLab/NSF/AURA/R. chispas

Sugieren que la densidad extremadamente baja de TOI-3757 b puede ser el resultado de dos factores. El primero se refiere al núcleo rocoso del planeta. Se cree que los gigantes gaseosos comienzan como núcleos rocosos de unas diez veces la masa de la Tierra, momento en el que atraen rápidamente grandes cantidades de gas vecino para formar los gigantes gaseosos que vemos hoy. TOI-3757b tiene una menor abundancia de elementos pesados ​​en comparación con otras enanas M gigantes gaseosas, y esto puede haber causado que el núcleo rocoso se formara más lentamente, retrasando el inicio de la acumulación de gas y, por lo tanto, afectando la densidad general del planeta.

READ  Estudio. Rastros de 58 millones de años encontrados por la documentación más antigua de geólogos de la U. en mamíferos costeros

Un segundo factor podría ser la órbita del planeta que, según la hipótesis inicial, es ligeramente elíptica. Hay momentos en que se acerca más a su estrella que en otros momentos, lo que resulta en un sobrecalentamiento significativo que puede causar que la atmósfera del planeta se hinche.

Satélite de sondeo de exoplanetas en tránsito de la NASA ([{» attribute=»»>TESS) initially spotted the planet. Kanodia’s team then made follow-up observations using ground-based instruments, including NEID and NESSI (NN-EXPLORE Exoplanet Stellar Speckle Imager), both housed at the WIYN 3.5-meter Telescope; the Habitable-zone Planet Finder (HPF) on the Hobby-Eberly Telescope; and the Red Buttes Observatory (RBO) in Wyoming.

TESS surveyed the crossing of this planet TOI-3757 b in front of its star, which allowed astronomers to calculate the planet’s diameter to be about 150,000 kilometers (100,000 miles) or about just slightly larger than that of Jupiter. The planet finishes one complete orbit around its host star in just 3.5 days, 25 times less than the closest planet in our Solar System — Mercury — which takes about 88 days to do so.

The astronomers then used NEID and HPF to measure the star’s apparent motion along the line of sight, also known as its radial velocity. These measurements provided the planet’s mass, which was calculated to be about one-quarter that of Jupiter, or about 85 times the mass of the Earth. Knowing the size and the mass allowed Kanodia’s team to calculate TOI-3757 b’s average density as being 0.27 grams per cubic centimeter (about 17 grams per cubic feet), which would make it less than half the density of Saturn (the lowest-density planet in the Solar System), about one quarter the density of water (meaning it would float if placed in a giant bathtub filled with water), or in fact, similar in density to a marshmallow.

READ  Para lograr sus objetivos, la NASA irá más allá con el "Inventivo" helicóptero de Marte.

“Potential future observations of the atmosphere of this planet using NASA’s new James Webb Space Telescope could help shed light on its puffy nature,” says Jessica Libby-Roberts, a postdoctoral researcher at Pennsylvania State University and the second author on this paper.

“Finding more such systems with giant planets — which were once theorized to be extremely rare around red dwarfs — is part of our goal to understand how planets form,” says Kanodia.

The discovery highlights the importance of NEID in its ability to confirm some of the candidate exoplanets currently being discovered by NASA’s TESS mission, providing important targets for the new James Webb Space Telescope (JWST) to follow up on and begin characterizing their atmospheres. This will in turn inform astronomers what the planets are made of and how they formed and, for potentially habitable rocky worlds, whether they might be able to support life.

Reference: “TOI-3757 b: A low-density gas giant orbiting a solar-metallicity M dwarf” by Shubham Kanodia, Jessica Libby-Roberts, Caleb I. Cañas, Joe P. Ninan, Suvrath Mahadevan, Gudmundur Stefansson, Andrea S. J. Lin, Sinclaire Jones, Andrew Monson, Brock A. Parker, Henry A. Kobulnicky, Tera N. Swaby, Luke Powers, Corey Beard, Chad F. Bender, Cullen H. Blake, William D. Cochran, Jiayin Dong, Scott A. Diddams, Connor Fredrick, Arvind F. Gupta, Samuel Halverson, Fred Hearty, Sarah E. Logsdon, Andrew J. Metcalf, Michael W. McElwain, Caroline Morley, Jayadev Rajagopal, Lawrence W. Ramsey, Paul Robertson, Arpita Roy, Christian Schwab, Ryan C. Terrien, John Wisniewski and Jason T. Wright, 5 August 2022, The Astronomical Journal.
DOI: 10.3847/1538-3881/ac7c20

Check Also

El telescopio espacial Webb de la NASA detecta vapor de agua en la zona de formación de planetas rocosos

El telescopio espacial Webb de la NASA detecta vapor de agua en la zona de formación de planetas rocosos

El concepto de este artista muestra la estrella PDS 70 y su disco protoplanetario interno. …

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *