Nuevo descubrimiento muestra por qué Urano y Neptuno son de diferentes colores

Voyager 2 Urano և Neptuno

La nave espacial Voyager 2 de la NASA capturó estas escenas de Urano (izquierda) y Neptuno (derecha) durante su vuelo a los planetas en la década de 1980. Préstamo: NASA/JPL-Caltech/B. Johnson

Las observaciones del Observatorio Gemini y otros telescopios muestran que hay niebla excesiva[{» attribute=»»>Uranus makes it paler than Neptune.

Astronomers may now understand why the similar planets Uranus and Neptune have distinctive hues. Researchers constructed a single atmospheric model that matches observations of both planets using observations from the Gemini North telescope, the NASA Infrared Telescope Facility, and the Hubble Space Telescope. The model reveals that excess haze on Uranus accumulates in the planet’s stagnant, sluggish atmosphere, giving it a lighter hue than Neptune.

https://www.youtube.com/watch?v=rWWwJNnhIXU:

Los planetas Neptuno և Urano tienen mucho en común, tienen masas similares, tamaños y composición atmosférica, pero su apariencia es significativamente diferente. En longitudes de onda visibles, Neptuno es ligeramente más azul, mientras que Urano tiene un tono cian pálido. Los astrónomos ahora tienen una explicación de por qué los dos planetas son de diferentes colores.

Una nueva investigación muestra que la capa de niebla concentrada en dos planetas es más gruesa en Urano que una capa similar en Neptuno, «blanqueando» la apariencia de Urano más que la de Neptuno.[1] Si no hay niebla allí atmósferas Para Neptuno y Urano, ambos eran casi igualmente azules.[2]

Esta conclusión proviene del modelo[3] que un equipo internacional dirigido por Patrick Irwin, profesor de física planetaria en la Universidad de Oxford, ha desarrollado para describir las capas de aerosoles en las atmósferas de Neptuno y Urano.[4] Estudios previos de la atmósfera superior de estos planetas se han centrado en la apariencia de la atmósfera solo en ciertas longitudes de onda. Sin embargo, este nuevo modelo, que consta de múltiples capas atmosféricas, coincide con las observaciones de los dos planetas en un amplio rango de longitudes de onda. El nuevo modelo incluye partículas de niebla en capas más profundas que anteriormente se pensaba que contenían solo nubes de hielo de metano y sulfuro de hidrógeno.

La atmósfera de Urano և Neptuno

Este diagrama muestra tres capas de aerosoles en las atmósferas de Urano y Neptuno, modeladas por un equipo de científicos dirigido por Patrick Irwin. En el diagrama, la escala de altura representa la presión por encima de 10 bar.
La capa más profunda (capa Aerosol-1) es gruesa, compuesta por una mezcla de partículas de hielo de sulfuro de hidrógeno formadas por la interacción de la luz de la atmósfera del planeta.
La capa principal que afecta a los colores es la capa intermedia, que es una capa de partículas de neblina (referidas en el papel como Aerosol-2), que es más gruesa en Urano que en Neptuno. El equipo sospecha que el hielo de metano en ambos planetas se está condensando en las partículas de esta capa, empujando las partículas de nieve de metano más profundamente en la atmósfera. Debido a que Neptuno tiene una atmósfera más activa y turbulenta que Urano, el equipo cree que la atmósfera de Neptuno es más eficiente para penetrar partículas de metano en la capa de niebla para producir esta nieve. Esto elimina más neblina: la capa de neblina de Neptuno se mantiene más delgada que en Urano, lo que significa que el color azul de Neptuno parece más fuerte.
Por encima de estas dos capas hay una capa alargada de niebla (capa de Aerosol-3), que es similar a la capa de abajo, pero más delgada. Grandes partículas de hielo de metano se forman en Neptuno por encima de esta capa.
Préstamo: Observatorio Internacional Gemini / NOIRLab / NSF / AURA, J. da Silva / NASA / JPL-Caltech / B. Johnson

«Este es el primer modelo que se adapta simultáneamente a las vistas de campo reflejado desde el ultravioleta hasta las longitudes de onda del infrarrojo cercano», dijo Irwin, quien presentó los hallazgos en el Journal of Geophysical Research. Es el autor principal de un artículo en la revista Planets. «Él es el primero en explicar la diferencia en los colores visibles de Urano y Neptuno».

El modelo del equipo consta de tres capas de aerosoles a diferentes alturas.[5] La capa principal que afecta a los colores es la capa intermedia, que es una capa de partículas de niebla (denominada en papel Aerosol-2), que es más gruesa en la superficie. Uranio que en Neptuno. El equipo sospecha que el hielo de metano en ambos planetas se está condensando en las partículas de esta capa, empujando las partículas de nieve de metano más profundamente en la atmósfera. Debido a que Neptuno tiene una atmósfera más activa y turbulenta que Urano, el equipo cree que la atmósfera de Neptuno es más eficiente para penetrar partículas de metano en la capa de niebla para producir esta nieve. Esto elimina más neblina: la capa de neblina de Neptuno se mantiene más delgada que en Urano, lo que significa que el color azul de Neptuno parece más fuerte.

«Esperábamos que el desarrollo de este modelo nos ayudara a comprender las nubes y la niebla en una atmósfera helada gigante», dijo el astrónomo Mike Wong.[{» attribute=»»>University of California, Berkeley, and a member of the team behind this result. “Explaining the difference in color between Uranus and Neptune was an unexpected bonus!”

To create this model, Irwin’s team analyzed a set of observations of the planets encompassing ultraviolet, visible, and near-infrared wavelengths (from 0.3 to 2.5 micrometers) taken with the Near-Infrared Integral Field Spectrometer (NIFS) on the Gemini North telescope near the summit of Maunakea in Hawai‘i — which is part of the international Gemini Observatory, a Program of NSF’s NOIRLab — as well as archival data from the NASA Infrared Telescope Facility, also located in Hawai‘i, and the NASA/ESA Hubble Space Telescope.

The NIFS instrument on Gemini North was particularly important to this result as it is able to provide spectra — measurements of how bright an object is at different wavelengths — for every point in its field of view. This provided the team with detailed measurements of how reflective both planets’ atmospheres are across both the full disk of the planet and across a range of near-infrared wavelengths.

“The Gemini observatories continue to deliver new insights into the nature of our planetary neighbors,” said Martin Still, Gemini Program Officer at the National Science Foundation. “In this experiment, Gemini North provided a component within a suite of ground- and space-based facilities critical to the detection and characterization of atmospheric hazes.”

The model also helps explain the dark spots that are occasionally visible on Neptune and less commonly detected on Uranus. While astronomers were already aware of the presence of dark spots in the atmospheres of both planets, they didn’t know which aerosol layer was causing these dark spots or why the aerosols at those layers were less reflective. The team’s research sheds light on these questions by showing that a darkening of the deepest layer of their model would produce dark spots similar to those seen on Neptune and perhaps Uranus.

Notes

  1. This whitening effect is similar to how clouds in exoplanet atmospheres dull or ‘flatten’ features in the spectra of exoplanets.
  2. The red colors of the sunlight scattered from the haze and air molecules are more absorbed by methane molecules in the atmosphere of the planets. This process — referred to as Rayleigh scattering — is what makes skies blue here on Earth (though in Earth’s atmosphere sunlight is mostly scattered by nitrogen molecules rather than hydrogen molecules). Rayleigh scattering occurs predominantly at shorter, bluer wavelengths.
  3. An aerosol is a suspension of fine droplets or particles in a gas. Common examples on Earth include mist, soot, smoke, and fog. On Neptune and Uranus, particles produced by sunlight interacting with elements in the atmosphere (photochemical reactions) are responsible for aerosol hazes in these planets’ atmospheres.
  4. A scientific model is a computational tool used by scientists to test predictions about a phenomena that would be impossible to do in the real world.
  5. The deepest layer (referred to in the paper as the Aerosol-1 layer) is thick and is composed of a mixture of hydrogen sulfide ice and particles produced by the interaction of the planets’ atmospheres with sunlight. The top layer is an extended layer of haze (the Aerosol-3 layer) similar to the middle layer but more tenuous. On Neptune, large methane ice particles also form above this layer.

More information

This research was presented in the paper “Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots” to appear in the Journal of Geophysical Research: Planets.

The team is composed of P.G.J. Irwin (Department of Physics, University of Oxford, UK), N.A. Teanby (School of Earth Sciences, University of Bristol, UK), L.N. Fletcher (School of Physics & Astronomy, University of Leicester, UK), D. Toledo (Instituto Nacional de Tecnica Aeroespacial, Spain), G.S. Orton (Jet Propulsion Laboratory, California Institute of Technology, USA), M.H. Wong (Center for Integrative Planetary Science, University of California, Berkeley, USA), M.T. Roman (School of Physics & Astronomy, University of Leicester, UK), S. Perez-Hoyos (University of the Basque Country, Spain), A. James (Department of Physics, University of Oxford, UK), J. Dobinson (Department of Physics, University of Oxford, UK).

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have for the Tohono O’odham Nation, the Native Hawaiian community, and the local communities in Chile, respectively.

READ  Un contorno de ángel mira la superficie de Marte և Otras notas para olvidarse del COVID-19

Check Also

El telescopio espacial Webb de la NASA detecta vapor de agua en la zona de formación de planetas rocosos

El telescopio espacial Webb de la NASA detecta vapor de agua en la zona de formación de planetas rocosos

El concepto de este artista muestra la estrella PDS 70 y su disco protoplanetario interno. …

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *